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Abstract

We investigate analytically and numerically the effects of tailoring the density profile in a
laser target in order to decrease imprinting of mass perturbations due to the long-wavelength mo
Inverting the acceleration of the ablation front during the shock transit time could reduce the early-
time mass perturbation amplitudes developed in the target after the shock transit. This principle w
first suggested for mitigating the RT instability of imploding Z-pinches [Velikogia., Phys.
Rev. Lett.77, 853 (1996); Phys. Plasm&as3377 (1998)]. As the shock wave slows down
propagating into higher density layers, the effective gravity near the ablation front has the same
direction as the density gradient. This makes the mass perturbations near it oscillate at a higher
frequency and at a lower amplitude than they normally would due to the “rocket effect” caused by
mass ablation [Sanz, Phys. Rev. L&&. 2700 (1994); Pirizt al., Phys. Plasmag 1117
(1997)]. So, tailoring density profiles instead of using flat densities is demonstrated to reduce the
“seed” mass perturbation amplitude at the onset of the exponential RT growth.

PACS numbers: 52.40.Nk, 52.35.Py



I. INTRODUCTION.

A critical issue of direct-drive laser fusion program is mitigating the distortion of the
imploded pellet due to the Rayleigh-Taylor (RT) instabflﬁﬁhe common approach is to deal
directly with the initial sources of the instability. Advances in improving optical smoothing of laser
beams and developing the pellet manufacturing technologies reduce the seed for the ablative RT
instability to a very low level. Still, even a small perturbation seed could be large enough to
preclude the achievement of high gain in the implosion.

To complement the two above direct means to the RT seed reduction, consider the followi
approach. Suppose that the sources of mass perturbations, that is, the levels of the beam and ta
non-uniformity, are given. Let us try to determine the structure of the pellet that minimizes the see
for the RT instability produced by these two sources. Here, we limit ourselves to the relatively
simple case of structuring the target via radial density tailoring. The high gain implosion regime
imposes certain requirements on the thickness and the areal mass of the pellet, and the laser pul
shape. We have to find a way to distribute the given mass within a layer of a given thickness (tha
is, the way the density profijgr) should be tailored) in order to minimize the early-time mass
perturbation amplitude. In general, the search for the most perturbation-resistant pellet structure
could include tailoring of both density and material composition, as well as adjusting the laser pul
shape to the density/material structure.

It is knowrf' ° that the fastest classical RT mode is localized near the accelerated surface, &
its growth rate is not sensitive to the density profile in the fluid. There are some indfcdtadns
density tailoring can help mitigate the target distortion due to the exponential RT instability
development, but this is not the effect studied here. In the present paper, we concentrate on the
early-time perturbation growth preceding the exponentiation phase. As shown from recent studie
’ the evolution of perturbations at early times resembles the development of vorticity-driven
Richtmyer-Meshkov (RM) instability rather than the acceleration-driven RT instability. The mass
ablation turns out to be a sufficiently strong stabilizing effect to stop the RM-like perturbation
growth at all wavelengths (in contrast with the RT growth, which is only stabilized at sufficiently
short wavelengttis Due to the “rocket effect” caused by mass abldtidbmass perturbations
instead of growing linearly exhibit decaying oscillations. These oscillations, discussed in
connection with ablative RT instabilfty, were first observed in numerical simulations of early-time
mass perturbation growfﬁ’.’6They have been described by the analytical model of Ref. 7. The
initial surface roughness and laser beam non-uniformity evolve during the shock transit time into
mass perturbations. These mass perturbation amplitudes seed the RT growth, once the rarefacti
wave from the rear side of the target reaches the ablation front and the subsonic acceleration of tl
target begins.

The role of density tailoring stems from the possibility to invert the acceleration of the
unstable interface during the shock transit time. If a shock wave is driven into increasing density,



and slows down as it propagates, the ablation front that follows the shock front would be
decelerated, too. Hence, local gravity is in the same direction as the density gradient, and small
perturbations tend to oscillate (propagate as running gravitational waves along the accelerated
interface) rather than growing exponentially. This mechanism contributes to the oscillations
additionally to the “rocket effect” mentioned above. Consequently, it affects the early-time evolutic
of perturbations by increasing characteristic frequencies of their oscillations. For a given level of
non-uniformity supplying the initial perturbations (e. g., lateral variation of laser intensity),
increased oscillation frequencies imply lower mass perturbation amplitudes at the onset of the
exponential RT growth.

Use of tailored density profiles for stabilization was recently proposed to mitigate the RT
instability development in imploding Z-pinch€s-' As far as the perturbation growth is concerned,
the main difference between the laser-driven ablative acceleration and the electromagnetic plasme
acceleration in a Z-pinéﬁis the purpose, and, by inference, the regime of acceleration. In a Z-
pinch plasma radiation source (PRS), the plasma is accelerated in order to convert its kinetic ene
into thermal at stagnation, and finally into radiation. Thus, the shock transit time might include all «
most of the implosion, as is the case for uniform fill or thick annular cylindrical loads. A shock-
driven acceleration is not feasible in direct drive laser fusion - too much pellet preheat prevents fu
compression. The opportunity to affect the perturbation growth using the density tailoring is
therefore limited to the early time, while the shock and compressibility effects are still relevant.
Therefore, the ablation drive case requires a much more detailed study of the perturbation evoluti

As demonstrated below, the radial density tailoring affects perturbations whose wavelengt
are of order of, or less than the shell thickness. At early time, while the aspect ratio is large, the
spherical pellet is nearly planar for these perturbations. Therefore, in the present paper we study
case of a planar geometry. This choice somewhat simplifies both analysis and numerics, but in n
way reduces the generality of the result. The stabilizing effect would work in the same way for
spherical geometry as it does for planar or cyIindchﬂses.

The paper is structured as follows. In Section I, we describe the dynamics of a shock wa
driven by an increasing ablation pressure into a tailored density profile, compare the 1-D simulati
results to the exact self-similar solution, and make analytical estimates for the evolution
perturbations. Section Ill presents a numerical study of the perturbation evolution for the vario
types of density tailoring, and Section IV concludes with a discussion.

Il. THEORY

A. Self-similar unperturbed flows

Let us describe one-dimensional (1-D) gas dynamics of a shock-piston flow generated wh
a shock wave is driven into a tailored density profile by a pressure that either remains constant ol
increases with time. The piston could be visualized as an ablation front for laser acceleration, or ¢
the magnetic field/plasma interface, in a Z-piﬁ%We will find how the piston acceleration (in the



x direction) depends on the relation between the rate of pressure increase and the shape of the
tailored density profile. Typically, the plasma represents a “heavy fluid”, accelerated by the pressi
of a “light fluid”, whether it be a low-density ablated plasma or a massless magnetic field, which
gives rise to the RT instability. However, the presence of a tailored density profile in a shock-pist
situation could reverse the direction of acceleration. In particular, if the pre-shock density increast
with time faster than the post-shock pressure, the intesfaxderates opposite to the propagation
direction of the shock wave. During this time, the propagating shock wave keeps bringing new
layers of the initially resting gas into motion in the posikivterection. This has been previously
shown heuristically, using a 0-D snowplow motidh this Section, we will demonstrate the same

in a more rigorous way, with the aid of an exact self-similar solution, generalizing that obtained in
Ref. 12 and, in a slightly different form, in Ref. 13. Evolution of small perturbations on top of this
self-similar flow will be studied below — analytically in Section 1B and numerically in Section IlI.

Consider a half-space> 0 filled with an ideal gas whose density profile is tailored

according to a power lawa(x) = po(x/A)* , wherePy andA are dimensional normalization
constants, and the constant dimensionless exparenil  determines the shape of the profile. Let
a piston, which moves according to the power law

X, (t) = L(t) = gt/ m (1)
(here againg, is a dimensional normalization constanis a dimensionless exponent) drive a

shock wave into the gas. In the reference frame where the piston is at rest, the 1-D motion of the

shocked fluid is described by the equations of continuity, adiabaticity, and motion:
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whereu, p, p, andy are thex-velocity, density, pressure, and adiabatic exponent of the shocked
gas, respectively. Fon> 1, both the shock and the piston accelerate with time, so that local
gravity has negative direction, from the accelerated fluid to the pistom £€dr, the shock and the
piston decelerate, and the local gravity is positive, directed from the piston to the fluid.

If the pre-shocked gas is cold, so that the shocks wave is strong at all time, then Egs. (2):

(4) admit an exact self-similar solution. Introducing a self-similar variaisex/L(t), we use the
self-similarity ansatz

u(x,t) = LU (7) = gt ™"V (),

p(x,t) = poL(t) N (7) = oo (go/ M*t™N(n), ®)

P(x, 1) = PL()YL2P() = po(gy ™/ m¥) ™™ P(n),



whereU (), N(7),and P . . : : I ,
(7). N(),andP(n) are dimensionless functions representing the self-similar profiles of

velocity, density, and pressure, respectively. With the aid of (5), the gasdynamic equations (2)-(«
are reduced to a system of two ordinary differential equations, which has to be solved numericall
as described in Appendix |.

As seen from Eq. (5), this solution is generated if the pressure at the piston is related to
either distance traveled by the piston or to time by a power law, p,@).0 t°. Comparing this
to (5), we find the value oh that corresponds tafor a giveny:

m=22% 2.

Xt2

(6)

Equation (6) illustrates that the shock-piston flow accelerates the fluid when the pressure at the
piston rises faster than the density in the unperturbed fluil wheno > x. Otherwise, when
0 < x , the fluid is deceleratedn(< 1). For instance, if the pressure rises linearly,1, then the
plasma layer of parabolic density £ 2) will be deceleratean = 3/4. If the same linearly rising
pressure drives a uniform density profile= 0), then the pre-shock density increases slower than
the post-shock pressure does, which means acceleratoB/2.

The self-similar profiles of post-shock density and temperature in an ideal gas w48
for these two cases are shown in Fig. 1. The density profile near the pisjers at has the

power-law asymptotic shape

Xmy =1 -2(m-1) @)
mly +x +2) -2

which is typically sharper than the pre-shock profile. Since the presstiré dt must be of order

unity (P(7) ~n°), we find for the self-similar temperature profi@@7) = P(17)/ N (1) ~n™°. For

the above two casesg,=1, x = 0 and 2, we find from (75 = -2/7and2/3, respectively. Then

the temperature vanishes and the density diverges near the accelerateg pi§ton € 3/2), and

vice versa, the temperature diverges and the density vanishes near the deceleratgd=p2stan (

N() ~n®, where s=

= 3/4), cf. Figs .1 (a), (b) This is not surprising. The entropy of the fluid particles adjacent to the
piston is determined dt" Y when the shock wave is formed. For 3/2, the shock velocity in

this limit tends to zero, and so do the post-shock temperature and pressure. The isentropic
compression that follows can make the pressure in these fluid particles finite only via infinite
increase of density. Conversely, far= 3/4, the shock velocity in the limit, o diverges, and so
does the post-shock temperature. Due to the subsequent isentropic compression, the temperatul
there remains infinite afterwards.

Figure 2 presents a comparison of the self-similar density profile calculated for the case of
decelerated pistona(=1, x = 2,m = 3/4) with those obtained in our simulations for similar
conditions. The simulated density profiles are seen to remain self-similar during the shock transit
time. The density gradient near the ablative piston in simulation is less steep than in the analytical
solution, because the temperature rises even faster than in Fig. 1(a), the ablation pressure being



maintained primarily through the conductive heat flow from the corona. Also, in the computations
the density ax = O is finite. Nevertheless, the observed self-similarity supports our prediction that
the ablation front in this case is decelerated, as shown below in Section IlI.

B. Simple linear stability analysis

Now we assume that the piston driving the self-similar flow is an ablation front. Then the
driving pressure is created by a mass ablation through this front, so that we deal with a “leaky
piston” rather than a solid piston or a contact interface. Still, the self-similar solution of Section II.,
could be valid, once the ablation front is identified with some surfaeg, =const rather than
with the surface) = 0. Then the ablation velocity,, like all the characteristic velocities, is

proportional toL =mL/t, whereL is the distance traveled by the piston, see Egs. (1), (5). We
introduce a dimensionless constamharacteristic of the ablation rate:
V.

=_3a 8
Y mL/t (8)

Let us describe perturbations of the ablation front using a discontinuity model identical to

that of Pirizet al.’ The model involves another dimensionless characteristic of the ablation front,
the density ratia, = p,/ p,, where the subscripts 1 and 2 refer to the dense shocked plasma ahe:

of and to the low-density plasma behind the ablation front, respectively. This parameter is also
supposed to be constant in time. Typicatly<<1, so that the Atwood number across the ablation

front, A=(@Q-r,)/(1+ry), is close to unity. We modify the boundary conditions given in Ref. 9
for the case of time-dependent acceleration and ablation velocity, and require all the perturbations
be localized near the ablation front or propagating from it, upstream or downstream. Then the
solution of the perturbation problem contains no perturbations incident on the front, only waves
outgoing from it. As shown in Appendix Il, the boundary conditions in this case are reduced to

86, iy, -, =0 ®
A v, +3 0 kg v, + AT T2 lev2 - gk, =0, (10)
dt 1+1, 0 ]

wheredx, is the displacement amplitude of the ablation frdm, is the perturbation of the axial

velocity at the ablation fronk,is the perturbation wave number. The boundary condition (9) at the
ablation front is well known in the literatutéthe boundary condition (10) is derived in Appendix
Il from the results of Ref. 9 under the above assumptions.

Introduce a new dimensionless independent variable [not to be confused with one of the
dependent variables, self-similar tempera@(g)]

6 = KL(t) = kgt™/m. (12)
Substitution of (8), (11) an&g(t) = m(m-1)8/t? into Egs. (9), (10) reduces this system to a
single equation fodx,:
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Solutions of this equation are expressed via the confluent hypergeometric functions. In particular
the solution regular &t= 0 and satisfying the initial conditiadx, (t =0) = dx, is given by

OX O B 2 iA H(m 1)D |(V+1)J_Dm 1 2ivA E
a—expEi—v DF Lu —0%, (13)
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WherelFl(a,c, 2) is the Kummer’s functio

To analyze the properties of this solution, let us start with the simple case of negligible effe
of mass ablation, obtained from (13) in the limit> 0. In this limit, the Kummer’s function is
reduced to the Bessel function (Ref. 15, Eq. 13.5.13):

&, _ m-1011-m)Aed™ %,(1—m)A0
X, 0 m EH m - Jam TE (14)

SinceA > 0, the evolution of perturbations is determined primarily by the signrof that is, by
the direction of acceleration of the interfacenk 1, so that the interface is decelerated, and there

is no reason for the RT instability to develop, then the argument of the Bessel function in (14) is
real. At late time @ >>1), the perturbations oscillate:

X, 1 1011~ m)AGDm @- m)AQ (15)
X, J_ Oom 0 m \} 2m 4

The amplitude of oscillations, as seen from Eq. (15), is slowly growing. A qualitative explanation
of this is found in Ref. 10: amplitude of a pendulum oscillating in a slowly decreasing gravitationa
field increases.

Form> 1, the interface is accelerated, and therefore, is RT unstable. In this case, in Eq.
(14) we have a modified Bessel function, which describes exponential growth instead of
oscillations at late time:

oX

. 1T (m- 1)A9Dm /(m DAD
X, ZJ_ Emm M m % E (16)

For the particular case of constant acceleration ), Eq. (14) yields
g):a = cosh/Agkt), 17)
0

as it should be. The perturbation growth described by Eq. (14) for the cases34 andn= 3/2
is shown in Fig. 3(a).
Introduction of mass ablation (finit§ changes the picture qualitatively. Now the

asymptotic behavior of solution (13) at late tima is

1_ —
K _ const [ 2™ Re%expE- v 2 +i A +i Mln 6%. (18)
X, 5 B + M ,\/E 2mv i




The solution describes decaying oscillations for any sign of acceleration. It is qualitatively similar
the particularly simple case of zero acceleratior=[1,0 = kyt, where v, for this case is an

appropriate replacement gf, in the definition (1)]:

X, =ex;%— vkt %o Akt H (19)
X, 1+r1, Jo H

cf. Ref. 7. The evolution of perturbations described by Eq. (13) for the cazes 4 andn=
3/2 andv = 0.05 is shown in Fig. 3(b). The only difference between the cases of accelenation (

3/2) and deceleratiom(= 3/4) is that in the former case the perturbation amplitude reaches a highe
peak value and oscillates at a lower frequency.

Stabilization of all modes in all acceleration regimes is explained with the aid of the
dispersion relation obtained in Ref. 9 (self-consistent derivations of similar relations are found in
Refs. 8, 16). The exponential growth rate for ablative RT instability is found to be equal to

/2
r =EAgk—i2k2v§% 2K (20)
s 1+r,
This expression follows from Egs. (9), (10) if the ablation velocity and accelerafiamdg, are
assumed constant. For the wavenumbers exceeding a cut-oftkyathe instability is fully

suppressed. Equation (20) demonstrates that the cut-off wavelength is determined by the balanc
the two terms in parenthessekfv§ Ity > gk, rather than by the balance of the whole term in

parentheses and the second terms in the right-hand side of Ed(\@@)./gk , sincer, <<1. For

k exceeding the cut-off value, Eq. (20) predicts exponentially decaying oscillations. Qualitatively,
this stabilization mechanism is described in Ref. 9. It is based on the fact that the ablation front is
isotherm:’ When the front moves into a higher temperature area, its temperature therefore does r
increase, but the temperature gradient near it does. Increased temperature gradient speeds up tr
mass ablation, producing the “rocket eff@u:é’sponsible for the oscillations that tend to decrease
the perturbation.

For our self-similar acceleration regimésy? 0t*™?, whereasgk [0t™?. Sincem is
positive, k?v? grows with time faster thagk. If g is positive (> 1, acceleration), then eventually
k?vZ /1, exceedgk, and the exponential perturbation growth evolves into decaying oscillations.

Otherwise, ifg is negativerfi< 1, deceleration), we have decaying oscillations from the start, see
Eq. (20). This is exactly what is described by Egs. (13), (18), (19), and illustrated by Fig. 3(b).
To summarize, we have predicted decaying oscillations instead of exponential perturbatior
growth for all wavelengths and all acceleration regimes subject to self-similarity restriction. This is
physically meaningful conclusion that could be tested in simulation and experiment. In contrast wi
that, neither the prediction of the exponential decay of perturbation, nor the calculated rates of de:
should be taken very seriously. The reason is that our simplifying assumption that no external
perturbations come to the ablation front as incident waves [see Eq. (A17)] is not fully justified.
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Actually, the plasma that reaches the ablation front has first passed through the rippled shock fro
The plasma patrticles therefore bring to the ablation front the perturbations of vorticity left after the
shock passage. The incident perturbations also decay with time, but much slower than
exponentially. For instance, in the case of zero acceleratienl(, the perturbations oscillate and
decay as Bessel functions of time, that is, 43 or t *2, depending on whether the shock wave is
strong or not? If the ablation front is RT unstable, then this power-law source of external
perturbations does not change the exponential growth rate. This is why the incident perturbations
could be safely neglected when the expressions for the growth rate like (20) are derived (if the
resulting growth rate is positive). If there is no exponential RT growth, this approximation is no
longer justified. Therefore, the exponential decay rates estimated above have little physical
significance. Still, the corresponding oscillation frequencies are physically meaningful because th
describe the immediate pressure response to the perturbation of the ablation front due to the “roc
effect””?

The complicated early-time evolution of perturbations generates the seeds for the exponen
RT instability development that starts after the shock transit time. We are interested in designing «
target so that the given external perturbations (e. g., lateral non-uniformity of the laser beam)
generate as small mass perturbation seeds as possible. This is where the tailored density profile:
help. Tailoring the initial density profile makgsiegative from the start. As shown above [e. g.,
see Fig. 3(b)], this increases the frequency of oscillations of the ablation front and decreases the
peak perturbation amplitude. We expect this effect to help decrease the perturbation amplitudes a
the time when the RT instability starts to develop. Simulation results presented in the next Sectiot
demonstrate that this indeed could be done.

lll. NUMERICAL SIMULATION

The simulations were performed in two dimensions (2-D) usingAle hydrocodel.9 This
code has proved to be very robust over a wide range of problems, including reactiv flows,
turbulent jet':?,1 flows about ship superstructhFeand RT instabilities in inertial confinement fusion
targets’® In the studies of the early-time perturbation growth in laser targe®asiteode has
proved effective at reproducing experimental observations of laser imptirtimdjat predicting the
oscillations due to the “rocket effedt®. The code includes flux-corrected transport (FCT)
advectior’ inverse bremsstrahlung laser energy absorption (multiple ray trace), and Spitzer-Harr
thermal conductiof® Radiation transport and tabulated equation of state (EOS) are also included i
the code. These, however, have not been invoked in the simulations reported below. Our goal is
demonstrate the hydrodynamic effect of density tailoring alone, without any contribution of
smoothing due to radiation transport or EOS effects. We simulate ablative acceleration of CH
(plastic) targets.

We compare four target structures that differ mainly by their density profiles, see Fig. 4(a)
[Note that in the simulations, the laser radiation comes from the posdivection, accelerating the



target to negative (the coordinate emulates in spherical geometry), a different sign from that
chosen in Section Il. This should not cause any confusion, since all the results of Section Il are
invariant under the substitution - —x.]

All the targets have the same areal mass @&.@/cn?. Targets 1 to 3 have also the same total
thickness, 14@um. The front part of target 1 approximates the parabolic density profile of Section
Il (x = 2). Density profile starting fromp = 0 is not realistic in target design, so that the actual
density profile of target 1 is

p(¥) =, + (o, - po)ggg, (21)

where p, = 0.05g/cm® (a foam of this low density could be manufactured; this value is just about
the critical density for KrF laser radiatiory, =1.07 g/lcm® (solid plastic density)y = 120um,
followed by a 2Qum payload of solid plastic [we also did some runs for the initial density profile
(21) without adding the payload]. In target 2, the areal mass contained in the profile (21) is
uniformly distributed over the same thickness, i2Q) which corresponds to a uniform density

p =0.39g/cm?, and followed by the same f@n payload. In target 3, the total mass 68.2
meg/cm3 is uniformly distributed with the constant density= 0.487g/cm?, over the same total
thickness, 12@m + 20um = 140um. Finally, the solid plastic target 4 has the same total mass,
and, therefore, is 63 thick, that is, thinner than the other three.

The targets are driven by a 0.24@ KrF laser radiation, as in Nike laser at the Naval
Research Laborato?ﬁ.Two shapes of laser pulse are used. One is selected to provide in target 1 .
linear increase of pressure from 0 to 4 Mbar during the shock transit through the density profile
(21), that is, in the first 4 ns [Fig. 4(b)], after which the laser intensity is held constant. This pulse
shape, as expected from the results of Section Il and demonstrated in Fig. 5 below, at early time
4 ns) produces a decelerating ablation front in target 1, and an accelerated ablation front in target
to 4. The other laser pulse shape studied here is a constant incident laser intensity, which
corresponds to the ablative pressure slowly decreasing from 2.75 Mbar to 1.75 Mbar at 10 ns d
to increased absorption in the plasma corona. Here again, the ablation front in target 1 at early tin
must be decelerating. In other targets, however, we expect zero acceleration, or even a small
deceleration (due to decreasing pressure). Of course, the theory of Section Il does not extend to
situation after the shock wave breaks out at the rear surface of targets 1, 3, 4, or is reflected fron
the payload boundary of target 2. There is no analytical theory available to describe perturbation
growth during the reverberation of shock and expansion waves, which eventually leads to the
subsonic acceleration regime. Here, we have to rely on the simulation results.

To facilitate comparison between various cases, we introduce a constant single-mode late
variation of the incident laser intensity. Evolution of perturbations studied below, therefore,
corresponds to laser imprinting of mass perturbations. As explained in Ref. 6, the early-time
perturbation growth due to the surface roughness is physically equivalent to that produced by the
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laser imprint. The difference is only in the initial conditions: in the former case, we create initial
amplitude of the perturbation, whereas in the latter we supply the perturbation with initial
momentum. The perturbation growth that follows is governed by the same physics and could be
scaled from one case to another. With tailored density profiles, the same amplitude of surface
ripples would imply a 20-fold difference in the initial mass variation between targets 1 and 4.
Below, we have all the targets initially uniform, driven by laser pulses with the same lateral
intensity variation, so that the comparison between the targets is deemed fair. For each target/las
pulse shape combination, we run the code with single-mode perturbation wavelengthmoB05

pm, and 6Qum.

Figure 5 is plotted for targets 1 (a) and 2 (b) driven by a linearly increasing ablative
pressure. It shows thet trajectories of fluid particles, that give an idea about the motion of the
ablation front. We see that at early time the ablation front in target 1 is indeed decelerated, as
predicted in Section II.A. Similarly, we demonstrate that for all the other targets, the ablation front
is accelerated by the linear pressure increase from the beginning of the laser pulse.

Figures 6 to 8 compare the evolution of mass perturbations between targets 1 to 4, all of
them driven by a laser pulse with linearly increasing ablative pressure, and a 0.2% rms single-mc
lateral intensity variation) = 15um, 30um, and 6Qum, respectively. Here, the early time (shock
transit) corresponds to the first 4 ns, whereas the “late time”, when the RT instability of accelerati
develops exponentially, starts somewhere between 6 and 8 ns.

For all cases, the qualitative behavior agrees with the predictions of Section II.B. The mas
perturbations tend to oscillate, no matter whether the ablation front is accelerated or decelerated,
although for the latter case (target 1) the frequency of oscillations is notably higher, and the
amplitude lower. We even observe some [albeit non-exponential, cf. Fig. 3(b)] decrease in the m
variation amplitude for the shortest perturbation waveleagti5um, see Fig. 6. Although we
have not studied the scaling of oscillation frequencies with the perturbation wavelength [in terms «
the discontinuity model of Ref. 9 and Appendix Il, even the scaling @fith A is not known for
tailored density profiles], one can naturally expect longer perturbation wavelengths to correspond
lower frequencies. This is indeed the case. During the shock transit time, we have multiple
oscillations in target 1 fok = 15um, one full cycle fod = 30um, and half cycle foA = 60um.

For all the other cases, we have no more than a half cycle.

Eventually, the oscillatory behavior evolves into an exponential growth for all targets. The

RT exponential growth ratds = Jg_k are essentially the same for all targets, since they are driven

by the same ablative pressure, have the same mass, and therefore experience the same acceler
There is, however, a significant difference between the targets in the amplitudes of these

exponentially growing modes. This is precisely the difference in the seeds for RT discussed abo
Firstly, we notice that the perturbations in the solid target 4 are consistently higher than in the oth
three. This clearly illustrates the beneficial effect of decreasing the average density of the target. 7
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effect has nothing to do with radiative smoothing of perturbations (recall that to emphasize this
point, we have no radiation transport here), it is purely hydrodynamic, as explained in Ref. 6.
Secondly, the perturbations in target 1 containing a tailored density profile are consistently lower
than in the other three. Evolution of perturbations in targets 2 and 3, 4 is differently affected by th
shock/rarefaction reverberations (a material interface in target 2 causes an additional shock
reflection), and thereby phase-sensitive: target 2 produces, a higher or a lower RT seed than tar¢
for A = 30pum andA = 60um, respectively, whereas far= 15um both perform similarly. In

contrast with this, target 1 always produces the lowest RT seed, which agrees with the results of
Section II.B. The stabilizing effect of radial density tailoring is generally more effective for shorter
wavelengths (at least a half cycle of oscillations has to be completed during the shock transit time
cf. Figs. 6-8), but it does not otherwise discriminate between the perturbation wavelengths. In ot
words, the effect is sufficiently robust.

This conclusion is confirmed by inspection of Figs. 9 to 11, plotted for a constant intensity
laser drive, all the other conditions being the same as in Figs. 6 to 8, respectively. Here,
acceleration of targets 2 to 4 at early time is very low. We observe oscillations due to sonic wave:
propagating in the lateral direction, as in the other cases of the RM-like instability devel?jf)ment.
Otherwise, the situation is quite similar to that presented in Figs. 6 to 8: the tailored density target
is consistently the best, the uniform solid target 4 is the worst, whereas the double-slab target 2 i
the low-density uniform target 3 are somewhere in between, their relative performance depending
on the perturbation wavelength.

Figures 12, 13 that show density perturbation mamﬂ(p)L, where(p)|X is the

average of the density ovgat a giverx, in targets 1 and 3 at various instants of time, help to see
why the mass perturbations are lower in a target with a tailored density profile. In target 1, at earl
time the density perturbation is spread over a wide plasma volume. The oscillations tend to
distribute the extra density more uniformly. The bubble-spike structure, distinct for a developed
single mode RT instability, is only formed at late time. In target 3, the bubble-spike structure,
developing from the start, oscillates as a whole. During the oscillation half cycle, the bubbles and
the spikes exchange places, but they are always present. Consequently, the mass perturbations
more localized in target 3 than in target 1, and it counts when the RT growth (which is precisely t
growth of localized mass perturbations) starts.

IV. CONCLUSIONS

Radial tailoring of initial density profiles in laser targets inverts the acceleration of the
ablation front at early time, thereby increasing the frequency and decreasing the amplitude of its
oscillations. This effect reduces the seed for the exponential RT instability growth generated by a
given lateral non-uniformity in the laser drive in a target of given mass and thickness. A significan
reduction in the seed mass perturbation amplitude in a target with a tailored density profile in our

12



simulations was found for all perturbation wavelengths, compared to a uniform target of the same
mass and thickness, at the level of at least 5 or more.

The stabilizing effect of density tailoring is purely hydrodynamic. In a way, it complements
a related, but different, stabilizing hydrodynamic effect of decreasing the initial density of the targe
which also reduces the seed for the RT instafjilitghe target design includes low-density outside
foam layers and more dense inner plastic or DT layers, then, as demonstrated in our simulations
smooth transitions from low to high initial density provides a significant reduction in the RT seed
compared to the case of two adjacent layers of different densities.

Our present results suggest the next step. A tailored density profile should be incorporatec
into a high-gain target design for direct-drive laser fusion, and an
implosion of such a target should be simulated with all the relevant physics included, to see whet
we could indeed expect a robust reduction in the net mass variation at stagnation. This work is n
in progress.
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Appendix I. Self-similar solution for the shock-piston flow with a tailored

density profile.

Substituting the ansatz (5) into Egs. (2)-(4) and introducing a new self-similar variable by
S(n) =y K[ n-U@n)IN(n)}, we obtain the following system of ordinary differential equations

for the self-similar variables:

u-madnN, oy (A1)
dn dn
©U-nInS .y .g-22 (A2)

dn dn m
dJ __(2m-2+mx)S+y(m-1)(U +1

(A3)
dn ymU +S-n)
Substituting (A3) into (A2), we obtain
dinS _ _m(x+)S+[y(m-1) +2-mlU + (m-2)n + y(m—l)_ (Ad)

dn mU +S-n)(n-V)
The two equations (A3) and (A4) must be solved numerically. Noté&{ifxtdoes not enter Egs.
(A3)-(A4). In a general case, once a solution of Eqgs. (A3), (A4) is fad{mg,could be expressed
via U(n) andS(n) from Egs. (Al1)-(A2) as

mOxd mOx-1+2
N =const (5™ P2 (7 U Jmo oz
(A5)
(the adiabaticity integral), where the constant is determined from the boundary conditions at the
shock front. In a particular case wf=2/(y +1) (for y= 5/3, this is our case of decelerated piston),
the integral (A5) cannot be used, but instead Eq. (A2) is immediately integrated to obtain

S(n) =const[{n—U)™. Then this expression f&n) is substituted into Eq. (A3), which must be
integrated together with (Al). In either case, we have to solve two coupled ordinary differential
equations.

The boundary condition at the pistap~ 0, isU - 0, hence,S - . Then we find
from (A3) that nean =0
_2m- y2m +my n.
After the shock formation, the gas near the piston is compressed (decompressed) if the coefficier
the right-hand side of Eq. (A6) is negative (positive). Substituting (A6) into (A4), we find an

asymptotic expression f&n):
__ym(x+1)

S - S) ml (2+y+x)m-2 ’ (A?)
where S, is a constant to be determined. Substituting (A6) and (A7) into the integral (A5), we
derive Eq. (7).

The boundary conditions at the shock frontpatn,, are the same as in Ref. 13:

-v+1
vy =2t

U~ (A6)

, (A8)
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_2y(n,+1)
S(ns) = T . (A9)

The self-similar coordinate of the shock frong, is not known in advance. The two

constantsyy.and S, in Eq. (A7), must be chosen to select a solution of Egs. (A3), (A4) that

satisfies two boundary conditions (A8), (A9). This is done by the shooting method. For instance,
one can select a trial value §f and use the asymptotic expressions (A6)-(A7) to start integration

of Egs. (A3), (A4) from some small but finiteuntil U (n) equals(2n -y +1)/(y +1) so that the
boundary condition (A8) is satisfied at some valug approximatingj,. Then we see if the left-

hand side of Eq. (A9) is larger or smaller than its right-hand side, adjust the v&8ye of

accordingly, and the procedure is repeated until it converges. This method was used to plot the <

similar profiles shown in Figs. 1, 2.

Appendix Il. Boundary conditions at the ablation front.
We derive the boundary conditions at the ablation front for the case of time-dependent

acceleration and ablation velocity, from those given in Ref. 9. Our notation is slightly different fror

that of Ref. 9. We suppose the plasma to be driven in the postivection, and the small
perturbationd] exp(iky) (the exponential factor is omitted below) to be imposed in-thplane.

In the reference frame of the ablation front, velocity of the plasma is thus negative, equal to
-\, and-v, upstream and downstream from the ablation front, respectively. By definition,

v, =V, ; due to mass conservation in the quasi-steady ablation pohp, =v, /v, =r, <<1. The

physical assumptions of Ref. 9 remain unchanged. Both characteristic veloctiedy,, are

much less than the respective sound speeds; thermal conduction is strong downstream and

negligible upstream, the ablation front is an isotherm. Then the linearized equations of continuity,
motion, and energy yield the following boundary conditions:

15

d
(P - pz)aéxa = PV, = PN, (A10)
B,y B, = i k(L ~ 1, )X, . (ALL)
5[31 - 5p2 - 2:01\/1 (&/xl _&/xz) - (p1 - pz)géxa =0, (A12)

oV, —ov,, = -kv,(1-r,)0x, (A13)

Here, 3, dv, anddv, are perturbations of pressure, axial and lateral velocity, and the subscripts 1

and 2 refer to the high-density (upstream) and low-density (downstream) plasmas separated by t
ablation front, respectively. Under the assumptions outlined above, density perturbations drop ot
from the boundary conditions.

Substituting (A13) into (A10), we obtain Eq. (9). From (A12), (A13), we find:

kep, _kop, _ (1- rD)(gk - 2k2\/1v2)5xa =0. (A14)

Py Py

We have to exclude the variables referring to the downstream state. Assuming that no

perturbations are incident onto the ablation front from the plasma corona (from downstream), one



can find the dependence between the downstream perturbation amplitudes

P, O,,, ad v,

16

from the dispersion relations for the outgoing wavafter some algebra, we
obtain:

kdp, d ,
—2 = v, —-ikv.ov .. Al5
] D dt X2 a”’vy2 ( )

In (A15), we expres&,, from (A13), o, from (All), substitute the resulting expression for
d, into (A14), and simplify it with the aid of (9). We are left with a boundary condition that relates
only the perturbations of the upstream flow variables, so that the subscript 1 in the perturbation

amplitudes could be omitted:

0 1) eV — g, + e (B, +16) +r ey, ~av =0, (a16)

This is a more general form of the boundary condition sought for. It could be used to describe th

effect of perturbations incident to the ablation front from the dense plasma (in this case,
&, dv,, ard dv, are independent variables). The stabilizing “rocket effect” of Ref. 9 is expressed by

the term proportional te*v./ry in the left-hand side of Eq. (A16): a displacen@‘mt of the
ablation front generates a negative contribution to the pressure re@ptﬁ’ﬂsethat tends to
decrease the displacement.

To derive Eg. (10), we have to make an additional assumption that no perturbations are

incident onto the ablation front from the upstream, thus neglecting the vorticity perturbations that
arrive with the plasma particles. Then the perturbation amplid@led/,, and dv, are connected

via the dispersion relation for sonic waves propagating upstream:

P _ 9 5 +kvov, v =-idv.. (A17)
pl dt X a~vx y X

Substituting (A17) into (A16), we obtain (10).
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Fig. 1. Self-similar profiles of densitil (thick lines), pressur@ and temperatur® for the
shock-piston flows driven by a linearly rising pressure (the self-similar coordjnsitgormalized
with respect to the shock coordinatg): (a) tailored (parabolic) initial density profilg € 2),

decelerationrq = 3/4); (b) uniform density profiley(= 0), acceleratiom( = 3/2).
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Fig. 2. Self-similar density profile of Fig. 1(a) (thick solid curve) compared to the density profiles
obtained in a simulated ablatively driven shock-piston flow that approximately corresponds to the
same parameterg € 2, m = 3/4). Simulation results (13 thin solid and dotted curves) are

calculated during the shock transit time for this target, between 1.5 and 3.5 ns. The flow profiles
are seen to be approximately self-similar.
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Fig. 3. Evolution of perturbations of the ablation front given by (13)rfpr 0.05, A=0.9, m =
3/4 andm = 3/2 (thin and thick solid curves, respectively): (a) no mass ablatiord); (b) with
mass ablationy = 0.05.
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Initial Density Profiles
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Fig. 4. (a) Initial density profiles in targets: parabolic (1) and low-density uniform (2) profiles

followed by a solid payload; all-uniform low-density (3) and solid plastic density (4) profiles. (b)
Laser pulse shape selected to make ablative pressure increase linearly with titpe=fodims to

t,=4ns: pOIl“, wherea = 0.75, so we choosk(t) :{]]f(tz -+ I15(t —tl)]/(t2 —tl)}/a,
wherel, =3[10*W/cm? and |, =1.9[10"*W/cm?. The pressure rise is indeed approximately

linear in time.
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Fig. 5. x-t diagrams for plasma particles labeled by their initial mass coordinates for: (a) target 1
with a parabolic density profile; (b) target 2 with a low-density uniform profile; both followed by a
solid density payload. The upper envelope curve of the high-density area is the ablation front. At
early time, in the parabolic density target, this curve is convex, which implies deceleration.
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Fig. 6. Time evolution of areal mass variatiqm({g/cms) in targets 1 to 4 driven by the laser
pulse of Fig. 4(b), with a 0.2% rms single-mode lateral intensity variatign=ats pum.
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Fig. 7. Time evolution of areal mass variatiqm(&g/cm?’) in targets 1 to 4 driven by the laser
pulse of Fig. 4(b), with a 0.2% rms single-mode lateral intensity variatign=ago pm.
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Fig. 8. Time evolution of areal mass variatiqm(Eg/cm3) in targets 1 to 4 driven by the laser
pulse of Fig. 4(b), with a 0.2% rms single-mode lateral intensity variatign=ago um.
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0.2% perturbation of A=15pu
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Fig. 9. Time evolution of areal mass variatiqm(Eg/cm3) in targets 1 to 4 driven by the laser
pulse of constant intensity, with a 0.2% rms single-mode lateral intensity variatioa g um.
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Fig. 10. Time evolution of areal mass variatiqm(Eg/cmS) in targets 1 to 4 driven by the laser
pulse of constant intensity, with a 0.2% rms single-mode lateral intensity variatpg gt pm.
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0.2% perturbation of A=60L
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Fig. 11. Time evolution of areal mass variatiqm(&g/cm3) in targets 1 to 4 driven by the laser
pulse of constant intensity, with a 0.2% rms single-mode lateral intensity variatpgr gt um.
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Parabolic Density; A=15u Laser Perturbation
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Fig. 12. Density perturbation maps gf- (p)L in a tailored density target 1 driven by a laser
pulse of Fig. 4(b) with a 1am perturbation wavelength at different times: (a) 1.5 ns; (b) 2 ns; (c)
4.5 ns; (d) 10 ns.
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Fig. 13. Density perturbation maps pf- (D)L in a uniform density target 3 driven by a laser
pulse of Fig. 4(b) with a 1am perturbation wavelength at different times: (a) 1.5 ns; (b) 2 ns; (c)
4.5 ns; (d) 10 ns.

30



